Análisis de Rendimientos de la Red de Macroparcelas de Soja

2a. Análisis de datos de rendimientos obtenidos de la Red de macroparcelas de soja en la campaña 2017/2018

2b. Comparación de rendimiento entre variedades RR1 y RR2Bt de la Red de macroparcelas de soja en el noroeste argentino, durante cinco campañas (2013-2018)

2c. Análisis de rendimientos de la Red de soja, según índice ambiental con ajuste lineal

El cultivo de la SON A en el noroeste argentino

Ledesma, F.*; José R. Sánchez*; Marcela Escobar*; Horacio Gómez*; Juan P. Nemec*; Rossana Espejo*; Roberto Gómez* y Mario Devani*

*Sección Granos, EEAOC. E-mail: granos@eeaoc.org.ar

os siguientes análisis, basados en el grupo de maduración (GM), los rendimientos normalizados sobresalientes y GGE Biplot, se realizaron para evaluar el comportamiento de las variedades que participaron en la Red de Macroparcelas de soja de la campaña 2017/2018. En los análisis realizados intervinieron los resultados de 11 ambientes del noroeste argentino, a excepción de la localidad de Piquete Cavado, que no fue considerada por presentar un alto coeficiente de dispersión en los datos. De manera complementaria, para evaluar los grupos de maduración también fueron incluidos los resultados de las últimas 10 campañas.

a) Análisis por grupos de maduración

Se realizó un análisis de la varianza (ANAVA) para observar el comportamiento de los distintos GM en los ambientes evaluados. determinando diferencias estadísticas significativas entre grupos de madurez. Por otra parte, mediante la prueba estadística DGC (p>0,05) se efectuó la comparación de rendimientos promedio de los distintos GM para cada una de las localidades evaluadas. Para realizar estos análisis se tomaron los datos de todas las variedades que participaron en los ensayos.

Se tomó como valor de referencia al grupo de madurez que logró la media más alta y se le asignó el valor de 100%, adquiriendo los demás GM valores porcentuales referidos a éste. Esto se realizó para cada localidad del noroeste argentino (NOA) y de Tucumán y

zonas de influencia (TucZI) (oeste de Santiago del Estero y sudeste de Catamarca), debido a que cada macroparcela se desarrolla en un ambiente particular con características que le son propias, por lo tanto se debe tener en cuenta que estas repercuten en el comportamiento de los distintos GM.

En la Tabla 1 se presentan, para cada localidad y por grupos de madurez considerado, los tres materiales que obtuvieron los mayores rendimientos, el rendimiento promedio y el valor relativo porcentual, junto con las diferencias entre grupos que surgen a partir del análisis estadístico (indicados con letras mayúsculas) y el número de materiales evaluados dentro de cada grupo de madurez (n).

Tabla 1. Variedades que obtuvieron los mayores rendimientos (kg/ha) en cada localidad de ensayo por grupo de maduración, rendimientos promedio, valor relativo porcentual del rendimiento, significancia estadística entre promedios y número de materiales evaluados para cada GM (n) en el noroeste argentino. Campaña 2017/2018. Letras distintas indican diferencias significativas (test LSD, ρ >0,05).

			0 14			0 141				/12/201	
	Grupo V		Grupo VI			Grupo VII			•	irupo VIII	
N	CZ 5907 IPRO	4509	DM 60i62 IPRO	4436		DM 67i70 IPRO	4363		ACA 789		•
La Cruz	RA 5715 IPRO	4128	DM 62r63 RR	4351		NS 7809 RG	4195		DM 847		4136
а			DM 63i64 IPRO	4346		HO 7510 IPRO	4134	•	DM 797		4091
ت	Α	4319	А	4161		AB	4061	•		<u>,</u> В	3865
	n= 2	100%	n= 13	96%		n= 9	94%	•	•	n= 7	90%
							•		•	•	•
						•	•	•		/12/201	
ä	Grupo V		Grupo VI			Grupo VII	•		G	irupo VIII	
Piedrablanca	RA 5715 IPRO	4140	HO 6620 IPRO	4067		RA 750 RR *	3402		DM 847		3363
ğ	CZ 5907 IPRO	4126	DM 60i62 IPRO	4065		HO 7510 JPRO	3394		ACA 789		3220
<u>ra</u>			DM 63i64 IPRO	3612		Tarpusqa RR •	3391	•	Biosoja 8	3.4 RR	3130
<u>ë</u>	А	4133	В	3461		С	3182		•	C	3086
Δ.	n= 2	100%	n= 13	84%		• n= 9	. 77%		•	n= 7	75 <mark>%</mark>
						•	•		•		•
						•	•	•		/12/201	
_	Grupo V		Grupo VI		•	Grupo VII		•		irupo VIII	
stí	RA 5715 IPRO	3477	DM 60i62 IPRO	3884	•	RA 750 RR	3196		Tukuy RI		3193
ng	CZ 5907 IPRO	3281	AW6211 IPRO	3667		-DM 67i70 IPRO	3083		ACA 789)0 IPRO	3115
San Agustín	ACA 5825 IPRO	3245	HO 6620 IPRO	3582	•	CZ 6806 IPRO	3 058	,	DM 847	3 RR	2970
San	А	3334	А	3436		В	2971			В	2927
0)	n= 3	97%	n= 9	100%	•	n= 9	86%			n= 8	85%
				•							
			•		•	•	•			/12/201	
	Grupo V		Grupo VI		•	Grupo VII			G	irupo VIII	
<u>ia</u>	CZ 5907 IPRO	2839	CZ 6505 RR	2772		DM 67170 IPRO	3339		DM 847		3172
gi	RA 5715 IPRO	2329	RA 6615 IPRO	2725		NS 7809 RG	2956		NS 8288		3134
La Virginia			DM 63i64 IPRO	2721		Tarpusqa RR	2862	1	CZ 7905	/ IPRO	2963
Ġ	AB	2584	• В	2572		AB	2760			A	2910
_	n= 2	89%	n= 13	88%		n = 9	95%			n=7	100%
			•		•						
	6	•	•	•						/12/201	
_	Grupo V		Grupo VI			Grupo VII				irupo VIII	
Jar	CZ 5907 IPRO	3634	CZ 6505 RR	3943		CZ 6806 IPRO	3486		ACA 789	_	3494
O	RA 5715 IPRO	3587	SYN 1561 IPRO	3822	•	DM 67i70 IPRO	3381		Biosoja 8		3327
Jal		•	DM 6563 IPRO	3705		SYN 7x1 IPRO	3381		DM 797	3 IPRO	3309
El Palomar	А	3611	A	3553		В	3202			В	3162
	n= 2 °	100%	• n ₌ 13	98%		n= 9	89%			n= 7	88%
		_				_					

(Continuación Tabla 1)

					19/01/2018	8
		Grupo V	Grupo VI	Grupo VII	Grupo VIII	
		CZ 5907 IPRO 3157	CZ 6505 RR 3243	DM 67i70 IPRO 3660	DM 8277 IPRO	3095
	ä	RA 5715 IPRO 3055	DM 63i64 IPRO 3185	NS 7709 IPRO 3274	DM 7976 IPRO	2900
	<u>a</u>		NS 6248 RG 3173	HO 7510 IPRO 3031	CZ 7905 IPRO	2802
	La Fragua	A 3106	A 2945	A 3012	А	2779
	ت	n= 2 100%	n= 13 95 %	n= 6 97%	n= 6	89%
					15/01/2018	8
		Grupo V	Grupo VI	Grupo VII	Grupo VIII	
	S	CZ 5907 IPRO 2810	DM 63i64 IPRO 2829	SYN 7x1 IPRO 3045	NS 8288 RG	3985
	Los Altos		DM 60i62 IPRO 2712	DM 67i70 IPRO 2932	Biosoja 8.4 RR	2963
	₹ «		CZ 65 <mark>0</mark> 5 RR 2654	NS 7709 IPRO 2819	CZ 7905 IPRO	2932
, •	o o	AB 2810	В 2455	AB 2782	А	2926
	- -	n=1 96%	n= 13 84 %	n= 6 95%	n= 7	100%
				•		
		Grupo V	Grupo VI	• Grupo VII	07/12/201 Grupo VIII	
	N N	CZ 5907 IPRO 4452	DM 60i62 IPRO 4616	CZ 6806 IPRO 4016	ACA 7890 IPRO	4117
	ē	RA 5715 IPRO 4326	RA 6615 IPRO 4310	DM 67i70 IPRO 3983	DM 8277 IPRO	4046
	3		DM 62r63 RR 4306	NS 7709 IPRO 3950	DM 8473 RR	4010
	San Lorenzo	A 4389	AB • 4121	C 3770	BC	3869
	Š	n= 2 100%	n= 13 94%	n= 9 86%	n= 7	88%
•			•			
						_
_		Crupo V	Crupo VI	Crupo VII	22/01/2018	
		Grupo V	Grupo VI	Grupo VII	Grupo VIII	
	_	RA 5715 IPRO 1639	RA 652 RR 2090	DM 67i70 IPRO 2021	Grupo VIII NS 8288 RG	2123
	tán		RA 652 RR 2090 DM 6563 IPRO 1946	DM 67i70 IPRO 2021 NS 7709 IPRO 1982	Grupo VIII NS 8288 RG DM 7976 IPRO	2123 2041
	/etán	RA 5715 IPRO 1639 CZ 5907 IPRO 1600	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR	2123 2041 2003
	Metán	RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A	2123 2041 2003 1984
	Metán	RA 5715 IPRO 1639 CZ 5907 IPRO 1600	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR	2123 2041 2003
	Metán	RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7	2123 2041 2003 1984 100%
	Metán	RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A	2123 2041 2003 1984 100%
		RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620 n= 2 82%	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832 n= 12 92% Grupo VI	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908 n= 5 96% Grupo VII	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7	2123 2041 2003 1984 100%
		RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620 n= 2 82%	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832 n= 12 92% Grupo VI SYN 6x8 IPRO 3499	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908 n= 5 96%	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7	2123 2041 2003 1984 100%
		RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620 n= 2 82%	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832 n= 12 92% Grupo VI SYN 6x8 IPRO 3499	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908 n= 5 96% Grupo VII DM 67i70 IPRO 3771	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7 16/01/2018 Grupo VIII DM 8277 IPRO	2123 2041 2003 1984 100% 8
		RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620 n= 2 82%	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832 n= 12 92% Grupo VI SYN 6x8 IPRO 3499 DM 63i64 IPRO 3357	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908 n= 5 96% Grupo VII DM 67i70 IPRO 3771 CZ 6806 IPRO 3239	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7 16/01/2018 Grupo VIII DM 8277 IPRO CZ 7905 IPRO	2123 2041 2003 1984 100% 8 3001 2889
		RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620 n= 2 82%	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832 n= 12 92% Grupo VI SYN 6x8 IPRO 3499 DM 63i64 IPRO 3357 SYN 1561 IPRO 3323	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908 n= 5 96% Grupo VII DM 67i70 IPRO 3771 CZ 6806 IPRO 3239 NS 7709 IPRO 3058	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7 16/01/2018 Grupo VIII DM 8277 IPRO CZ 7905 IPRO NS 8288 RG	2123 2041 2003 1984 100% 8 3001 2889 2809
		RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620 n= 2 82%	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832 n= 12 92% Grupo VI SYN 6x8 IPRO 3499 DM 63i64 IPRO 3357 SYN 1561 IPRO 3323 A 3120	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908 n= 5 96% Grupo VII DM 67i70 IPRO 3771 CZ 6806 IPRO 3239 NS 7709 IPRO 3058 A 3356	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7 16/01/2018 Grupo VIII DM 8277 IPRO CZ 7905 IPRO NS 8288 RG B n= 6	2123 2041 2003 1984 100% 8 3001 2889 2809 2816 84%
		RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620 n= 2 82%	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832 n= 12 92% Grupo VI SYN 6x8 IPRO 3499 DM 63i64 IPRO 3357 SYN 1561 IPRO 3323 A 3120 n= 9 93%	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908 n= 5 96% Grupo VII DM 67i70 IPRO 3771 CZ 6806 IPRO 3239 NS 7709 IPRO 3058 A 3356 n= 3 100%	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7 16/01/2018 Grupo VIII DM 8277 IPRO CZ 7905 IPRO NS 8288 RG B n= 6	2123 2041 2003 1984 100% 8 3001 2889 2809 2816 84%
		RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620 n= 2 82%	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832 n= 12 92% Grupo VI SYN 6x8 IPRO 3499 DM 63i64 IPRO 3357 SYN 1561 IPRO 3323 A 3120 n= 9 93% Grupo VI	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908 n= 5 96% Grupo VII DM 67i70 IPRO 3771 CZ 6806 IPRO 3239 NS 7709 IPRO 3058 A 3356 n= 3 100%	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7 16/01/2018 Grupo VIII DM 8277 IPRO CZ 7905 IPRO NS 8288 RG B n= 6 16/01/2018 Grupo VIII	2123 2041 2003 1984 100% 8 3001 2889 2809 2816 84%
	Ballivian	RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620 n= 2 82% Grupo V RA 5715 IPRO 3259	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832 n= 12 92% Grupo VI SYN 6x8 IPRO 3499 DM 63i64 IPRO 3357 SYN 1561 IPRO 3323 A 3120 n= 9 93% Grupo VI DM 63i64 IPRO 3479	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908 n= 5 96% Grupo VII DM 67i70 IPRO 3771 CZ 6806 IPRO 3239 NS 7709 IPRO 3058 A 3356 n= 3 100% Grupo VII DM 67i70 IPRO 3525	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7 16/01/2018 Grupo VIII DM 8277 IPRO CZ 7905 IPRO NS 8288 RG B n= 6 16/01/2018 Grupo VIII DM 8473 RR	2123 2041 2003 1984 100% 8 3001 2889 2809 2816 84%
	Ballivian	RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620 n= 2 82%	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832 n= 12 92% Grupo VI SYN 6x8 IPRO 3499 DM 63i64 IPRO 3357 SYN 1561 IPRO 3323 A 3120 n= 9 93% Grupo VI DM 63i64 IPRO 3479 SYN 6x8 IPRO 3411	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908 n= 5 96% Grupo VII DM 67i70 IPRO 3771 CZ 6806 IPRO 3239 NS 7709 IPRO 3058 A 3356 n= 3 100% Grupo VII DM 67i70 IPRO 3525 NS 7809 RG 3421	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7 16/01/2018 Grupo VIII DM 8277 IPRO CZ 7905 IPRO NS 8288 RG B n= 6 16/01/2018 Grupo VIII DM 8473 RR CZ 7905 IPRO	2123 2041 2003 1984 100% 8 3001 2889 2809 2816 84% 8
	Ballivian	Grupo V RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620 n= 2 82% Grupo V RA 5715 IPRO 3259 CZ 5907 IPRO 3208	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832 n= 12 92% Grupo VI SYN 6x8 IPRO 3499 DM 63i64 IPRO 3357 SYN 1561 IPRO 3323 A 3120 n= 9 93% Grupo VI DM 63i64 IPRO 3479 SYN 6x8 IPRO 3411 RA 6615 IPRO 3389	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908 n= 5 96% Grupo VII DM 67i70 IPRO 3771 CZ 6806 IPRO 3239 NS 7709 IPRO 3058 A 3356 n= 3 100% Grupo VII DM 67i70 IPRO 3525 NS 7809 RG 3421 CZ 6806 IPRO 3293	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7 16/01/2018 Grupo VIII DM 8277 IPRO CZ 7905 IPRO NS 8288 RG B n= 6 16/01/2018 Grupo VIII DM 8473 RR CZ 7905 IPRO DM 7976 IPRO DM 7976 IPRO	2123 2041 2003 1984 100% 8 3001 2889 2809 2816 84% 8
		Grupo V RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620 R= 2 82% Grupo V RA 5715 IPRO 3259 CZ 5907 IPRO 3208 A 3234	RA 652 RR 2090 DM 6563 IPRO 1946 DM 6364 IPRO 1926 B 1832 n= 12 92% Grupo VI SYN 6x8 IPRO 3499 DM 6364 IPRO 3357 SYN 1561 IPRO 3323 A 3120 n= 9 93% Grupo VI DM 6364 IPRO 3479 SYN 6x8 IPRO 3411 RA 6615 IPRO 3389 A 3174	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908 n= 5 96% Grupo VII DM 67i70 IPRO 3771 CZ 6806 IPRO 3239 NS 7709 IPRO 3058 A 3356 n= 3 100% Grupo VII DM 67i70 IPRO 3525 NS 7809 RG 3421 CZ 6806 IPRO 3293 A 3261	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7 16/01/2018 Grupo VIII DM 8277 IPRO CZ 7905 IPRO NS 8288 RG B n= 6 16/01/2018 Grupo VIII DM 8473 RR CZ 7905 IPRO DM 7976 IPRO A	2123 2041 2003 1984 100% 8 3001 2889 2809 2816 84% 8 3295 3277 3258 3166
	Ballivian	Grupo V RA 5715 IPRO 1639 CZ 5907 IPRO 1600 C 1620 n= 2 82% Grupo V RA 5715 IPRO 3259 CZ 5907 IPRO 3208	RA 652 RR 2090 DM 6563 IPRO 1946 DM 63i64 IPRO 1926 B 1832 n= 12 92% Grupo VI SYN 6x8 IPRO 3499 DM 63i64 IPRO 3357 SYN 1561 IPRO 3323 A 3120 n= 9 93% Grupo VI DM 63i64 IPRO 3479 SYN 6x8 IPRO 3411 RA 6615 IPRO 3389	DM 67i70 IPRO 2021 NS 7709 IPRO 1982 CZ 6806 IPRO 1900 AB 1908 n= 5 96% Grupo VII DM 67i70 IPRO 3771 CZ 6806 IPRO 3239 NS 7709 IPRO 3058 A 3356 n= 3 100% Grupo VII DM 67i70 IPRO 3525 NS 7809 RG 3421 CZ 6806 IPRO 3293	Grupo VIII NS 8288 RG DM 7976 IPRO DM 8473 RR A n= 7 16/01/2018 Grupo VIII DM 8277 IPRO CZ 7905 IPRO NS 8288 RG B n= 6 16/01/2018 Grupo VIII DM 8473 RR CZ 7905 IPRO DM 7976 IPRO DM 7976 IPRO	2123 2041 2003 1984 100% 8 3001 2889 2809 2816 84% 8

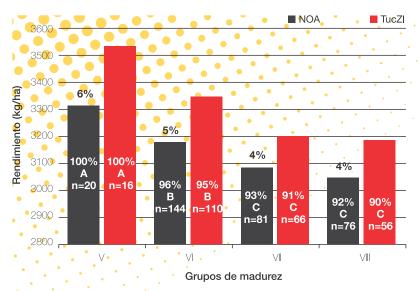


Figura 1. Rendimientos promedio por GM, valor relativo porcentual, significancia estadística entre rendimientos promedio y número de materiales evaluados dentro de cada GM (n) para el noroeste argentino y Tucumán y zonas de influencia, y su diferencia porcentual. Campaña 2017/2018. Letras distintas indican diferencias significativas (test LSD, p>0,05).

Se puede observar que en la región del NOA los mayores rendimientos se presentaron en los GM V y VI con valores de 3313 y 3174 kg/ha respectivamente, asignándole al primero el valor porcentual de 100% y al segundo de 96%; luego encontramos al GM VII con 3080 kg/ha de rendimiento promedio (93%), y por último al GM VIII con 3045

(92%). El análisis estadístico arrojó diferencias significativas en tres estratos: en primer lugar el GM V (A), luego el GM VI (B) y en un tercer escalón los grupos VII y VIII (C).

En el caso de TucZl, podemos observar que al comparar los rendimientos promedio entre grupos, se repiten los resultados mencionados anteriormente, es decir tres escalones representados en primer lugar por el GM V (3535 kg/ha), luego el VI (3348 kg/ha) y en tercer lugar los GM VII y VIII (3202 kg/ha y 3188 kg/ha respectivamente). El GM V obtuvo nuevamente el valor porcentual del 100% (A), seguido por el VI con el 95% (B) y finalmente el VII y VIII con valores de 91% (C) y 90% (C) respectivamente.

De la comparación entre ambos conjuntos de ambientes se desprende que las localidades evaluadas en TucZl presentaron rendimientos promedio mayores con respecto a los obtenidos en localidades del NOA (contrario a lo sucedido en la campaña pasada), alcanzando estas diferencias valores entre 4% y 6% para cada grupo de madurez.

Al analizar el desempeño de los GM en el NOA y TucZl durante las últimas 10 campañas agrícolas (2008/2009 - 2017/2018) (Figuras 2 y 3), se observa en primer lugar que en el caso del NOA, en la campaña 2017/2018 los

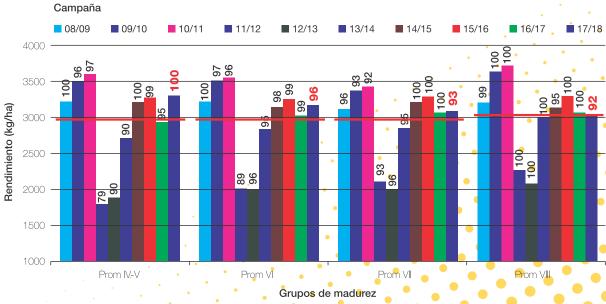


Figura 2. Resumen de rendimientos normalizados promedio por grupo de madurez (GM), en el período 2008/2009 2017/2018 para el noroeste argentino. Prom.: promedio.

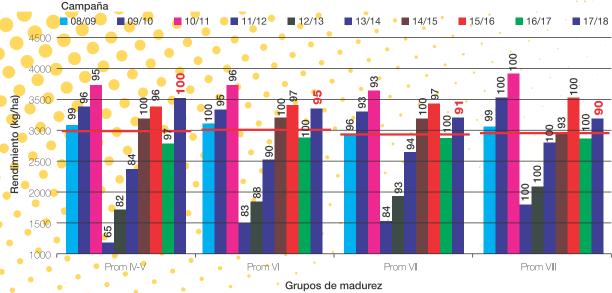


Figura 3. Resumen de rendimientos normalizados promedio por grupo de madurez (GM), en el periodo 2008/2009 – 2017/2018, en Tucumán y zonas de influencia. Prom.: promedio.

rendimientos superaron a la media de los últimos 10 años (representado con línea roja horizontal). Además, se aprecia una clara supremacía del GM VIII superando a los otros grupos en 7 de las 10 campañas analizadas. En el caso de TucZI continúa la tendencia de rendimientos por encima de la media con respecto a las últimas 10 campañas, predominando los materiales del GM VIII con rindes superiores y manteniendo su estabilidad en el tiempo.

 b) Análisis de frecuencia de aparición entre los mejores rendimientos normalizados

En el siguiente análisis se

presentan los resultados de aquellas variedades que alcanzaron mayores rendimientos, ubicándose dentro del cuartil superior (Q3). Conforme a este criterio estadístico, para cada localidad ensayada se ordenaron los datos de rendimiento de mayor a menor, dividiéndose luego la cantidad de registros (n) en cuartos. De esta manera, el valor de Q3 representa los mejores rindes (ubicados dentro del 25% de los rendimientos máximos para esa localidad). Dicho análisis se realizó para ciclos cortos (GM V y VI) y largos (GM VII y VIII), en las localidades del noroeste argentino (NOA) y en las de Tucumán y zonas de influencia (TucZI).

En la Tabla 2 se muestran para ambos ciclos (cortos y largos) las variedades que se destacaron por alcanzar los mayores rendimientos en cada localidad, posicionándose por encima del Q3 en la campaña 2017/2018. Se muestra, además, el valor (en kg/ha) que representa el límite de rendimiento que separa este cuartil. En las Figuras 4 y 5 se representa la frecuencia de aparición de dichas variedades en el NOA (también discriminando grupos de madurez) y en las Figuras 6 y 7 para TucZl. Estos gráficos permiten observar tendencias en cuanto al potencial de rendimiento de las variedades analizadas y su plasticidad y adaptación a los diferentes ambientes considerados.

Tabla 2. Valores de Q3 y variedades de rendimientos superiores en las distintas localidades del noroeste argentino separadas en grupos cortos y largos, durante la campaña 2017/2018.

La Cruz		F.S	S.: 27/12/17	,	Piedrablanca	1	F.\$	S.: 28/12/17	,
Variedad	Rto kg/ha	I.N.	Rto. Norm.		Variedad	Rto kg/ha	l.N.	Rto. Norm.	
CZ 5907 IPRO	4368	0,97	4509	Q 3	RA 5715 IPRO	4144	1,00	4140	Q 3
DM 60i62 IPRO	4297	0,97	4436	4346	CZ 5907 IPRO	4127	1,00	4126	4065
DM 62r63 RR	4275	0,98	4351	4340	HO 6620 IPRO	4155	1,02	4067	4000
Variedad	Rto kg/ha	I.N.	Rto. Norm.		Variedad	Rto kg/ha	I.N.	Rto. Norm.	
DM 67i70 IPRO	4384	1,00	4363		RA 750 RR	3450	1,01	3402	
ACA 7890 IPRO	4253	0,99	4283	Q 3	HO7510 IPRO	3472	1,02	3394	Q 3
NS 7809 RG	4110	0,98	4195	4134	Tarpusqa RR	3468	1,02	3391	3285
DM 8473 RR	4136	1,00	4136		DM 8473 RR	3259	0,97	3363	

(Continuación Tabla 2)

ACA 7890 IPRO

DM 67i70 IPRO

San Agustín		F.S	S.: 16/12/17	7
Variedad	Rto kg/ha	I.N.	Rto. Norm.	
DM 60i62 IPRO	3883	1,00	3884	
AW6211 IPRO	3716	1,01	3667	Q 3
HO 6620 IPRO	3609	1,01	3582	3482
M6410 IPRO	3549	0,99	3576	3402
RA 652 RR	3556	1,01	3509	
Variedad	Rto kg/ha	I.N.	Rto. Norm.	
RA 750 RR	3140	0,98	3196	
Tukuv BB	3131	0.98	3193	Q3

3136

3029

1,01

0,98

3115

3083

La Virginia		F.5	S.: 31/12/17	,
Variedad	Rto kg/ha	I.N.	Rto. Norm.	
CZ 5907 IPRO	2771	0,98	2839	Q 3
CZ 6505 RR	2768	1,00	2772	272
RA 6615 IPRO	2721	1,00	2725	212
Variedad	Rto kg/ha	I.N.	Rto. Norm.	
DM 67i70 IPRO	3233	0,97	3339	
DM 8473 RR	3273	1,03	3172	Q3
NS 8288 RG	3234	1,03	3134 .	295
CZ 7905 IPRO	3029	1,02	2963	•

F.S.: 19/01/18

Rto kg/ha I.N. Rto. Norm.

La Fragua

DM 8277 IPRO

CZ 6806 IPRO

DM 8473 RR

Variedad

3058

El Palomar F.S.: 09/12/17				
Variedad	Rto kg/ha	I.N.	Rto. Norm.	
CZ 6505 RR	3844	0,97	3943	Q 3
SYN 1561 IPRO	3726	0,97	3822	3705
Variedad	Rto kg/ha	I.N.	Rto. Norm.	
ACA 7890 IPRO	Rto kg/ha	I.N. 1,00	Rto. Norm.	
				Q 3
ACA 7890 IPRO	3505	1,00	3494	Q 3 3373

Los Altos		F.S	S.: 15/01/18	3
Variedad	Rto kg/ha	I.N.	Rto. Norm.	
DM 63i64 IPRO	2706	0,96	2829	Q 3
CZ 5907 IPRO	2932	1,04	2810	2654
DM 60i62 IPRO	2594	0,96	2712	2034
Variedad	Rto kg/ha	I.N.	Rto. Norm.	
NS 8288 RG	3985	1,00	3985	Q 3
SYN 7x1 IPRO	3045	1,00	3045	2932
Biosoja 8.4 RR	2963	1,00	2963	2332

			•	
Metán		F.S	5.: 22 /01/18	3
Variedad	Rto kg/ha	I.N.	Rto. Norm.	•
RA 652 RR	2069	0,99	2090	Q 3
DM 6563 IPRO	1868	0,96	1946	1911
DM 63i64 IPRO	1907	0,99	1926	1911
Variedad	Rto kg/ha	I.N.	Rto.•Norm.	•
NS 8288 RG	2145•	1,01	2123	Q 3
DM 7976 IPRO	2062	1,01	2041	2003
DM 67i70 IPRO	2022	1,00	2021	2000

CZ 6505 RR	3247	1,00	3243	Q 3
DM 63i64 IPRO	3189	1,00	3185	3157
NS 6248 RG	3237	1,02	3173	3137
Variedad	Rto kg/ha	I.N.	Rto. Norm.	•
DM 67i70 IPRO	3515	0,96	3660	Q 3
NS 7709 IPRO	3531•	1,08	3274	3 0 31
DM 8277 IPRO	2973	0,96	309 <mark>5</mark>	3031
•				
San Lorenzo	•	°F.S	6.: 07/12 <mark>/</mark> 17	,
San Lorenzo Variedad	Rto kg/ha	F.S	6.: 07/12/17 Rto. N orm.	7
•	Rto kg/ha			
Variedad •		I.N.	Rto. Norm.	Q3
Variedad • DM 60i62 IPRO	4607	I.N. 1,00	Rto. Norm.	
Variedad DM 60i62 IPRO CZ 5907 IPRO	4607	1,00 1,00	Rto. Norm. 4616 4454	Q3 4310

3928

4112

3893

0,97

1,02

0,97

4046

4016

4010

Q 3

3983

Ballivián Oes	ste	F.S	5.: <mark>16/01/1</mark> 8	В
Variedad	Rto kg/ha	I.N.	Rto. Norm.	
SYN 6x8 IPRO	3386	0,97	3499	Q 3
DM 63i64 IPRO	3566	1,06	3357	3323
Variedad	Rto kg/ha	I.N.	Rto. Norm.	
DM 67i70 IPRO	3964	1,05	3771	Q 3
CZ 6806 IPRO	3406	1,05	3239	305 8

(Continuación Tab	ola 2)	•	•	•
Mosconi		F.S	5.: 16/01/18	B .
Variedad	Rto kg/ha	I.N.	Rto. Norm.	•
DM 63i64 IPRO	3258	0,94	3479	Q 3
SYN 6x8 IPRO	3533	1,04	3411	3377
RA 6615 IPRO	3525	1,04	3389	• 3377
Variedad	Rto kg/ha	I.N.	Rto. Norm.	•
DM 67170 IPRO	3571	1,01	3525	Q 3
NS 7809 RG	3470	1,01	_• 3421°	3293
DM 8473 RR	3261	0,99	3295	0290

Al analizar los datos obtenidos de localidades del NOA se puede observar que dentro de los cultivares de ciclo corto, la variedad CZ 5907 IPRO lidera el grupo mostrando un rendimiento superior en el 50% de los ambientes evaluados, seguida por DM 63i64 IPRO con rendimientos superiores en el 45% de los

casos; luego, el cultivar DM 60i62 IPRO, que logró destacarse en el 44% de los ambientes analizados (Figura 4). A continuación se ubicaron las variedades CZ 6505 RR con el 27% y RA 5715 IPRO con el 22%. Finalmente se ubicaron ocho cultivares más con 20% o menos de porcentaje de aparición entre los mejores rindes.

Se puede apreciar, además, que en esta campaña el primer puesto está ocupado por un material de GM V, y luego el predominio de variedades de GM VI, distinto a lo sucedido en la campaña anterior (2016/2017), en la que no se encontraron materiales del grupo V en los primeros cuatro puestos.

Entre los cultivares de ciclo largo (Figura 5) sobresale claramente el cultivar DM 67i70 IPRO, que consiguió posicionarse en primer lugar por sus altos rendimientos en el 72% de los ambientes ensayados. Posteriormente, con el 50% se ubica el material DM 8473 RR; luego ACA 7890 IPRO con el 40%; RA 750 RR con el 33%; CZ 6806 IRPO y NS 8288 RR con el 27% y SYN 7x1 IPRO con el 22% de rendimientos superiores en las macroparcelas. Finalmente, con valores inferiores al 20%, se ubicaron las variedades restantes.

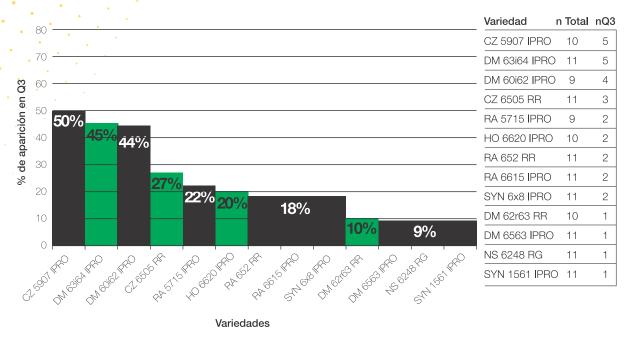


Figura 4. Frecuencia de aparición de variedades de ciclo corto con rendimiento superior en 10 localidades del noroeste argentino, en la campaña 2017/2018.

n: cantidad de localidades en que fue evaluada.

nQ3: cantidad de localidades en la que obtuvo rendimientos superiores.

43

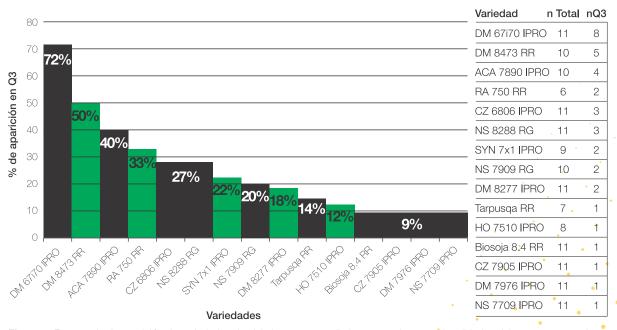


Figura 5. Frecuencia de aparición de variedades de ciclo largo con rendimiento superior en 12 localidades del noroeste argentino, en la campaña 2017/2018.

n: cantidad de localidades en que fue evaluada.

nQ3: cantidad de localidades en la que obtuvo rendimientos superiores.

En el caso de las macroparcelas de Tucumán y ZI, entre los materiales de ciclo corto sobresale la variedad CZ 5907 IRPO (manteniendo el primer puesto al igual que en el NOA), habiendo conseguido altos rendimientos

en el 63% de los ambientes evaluados, seguida de DM 60i62 IPRO (esta última se posicionó en tercer lugar en el análisis del NOA, Figura 4). Con un 29% le sigue RA 5715 IPRO, mientras que con el 25%, las variedades CZ 6505 RR y HO 6620 IPRO. Para finalizar se posicionaron otros siete cultivares con porcentajes inferiores a 13%. De igual modo, en comparación con el NOA se observan entre los tres primeros puestos dos materiales de grupo de madurez V (Figura 6).

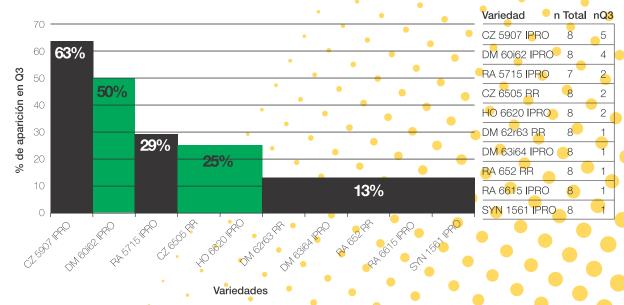


Figura 6. Frecuencia de aparición de variedades de ciclo corto con rendimiento superior en 6 localidades de Tucumán y zonas de influencia, en la campaña 2017/2018.

n: cantidad de localidades en que fue evaluada.

nQ3: cantidad de localidades en la que obtuvo rendimientos superiores.

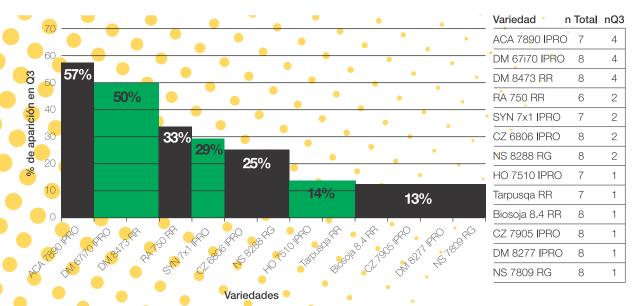


Figura 7. Frecuencia de aparición de variedades de ciclo largo con rendimiento superior en 8 localidades de Tucumán y zonas de influencia, en la campaña 2017/2018.

n: cantidad de localidades en que fue evaluada.

nQ3: cantidad de localidades en la que obtuvo rendimientos superiores

Finalmente, en la Figura 7 se presenta la frecuencia de aparición en el cuartil superior de los materiales de ciclo largo en Tucumán y ZI. Encontramos en primera posición, con el 57% de frecuencia, el material ACA 7890 IPRO (que en caso del NOA ocupó el tercer puesto), seguido con el 50% por DM 67i70 IPRO y DM 8473 RR (primer y segundo puesto con el 72% y 50% respectivamente en el NOA). Luego, con el 33% se encuentra la variedad RA 750: con el 29% SYN 7x1 IPRO y con el 25% CZ 6806 IPRO y NS 8288 RR. El resto de los materiales evaluados se presentan con valores inferiores a 14%.

c) Análisis de datos de ensayos multiambientales a través de la metodología GGE biplot.

Cada ambiente (E) ejerce una influencia determinada sobre las distintas variedades de soja (lo que se conoce como interacción genotipo-ambiente), situación que da como resultado

comportamientos diferenciales entre los cultivares evaluados. De esta manera, podemos encontrar genotipos (G) que poseen una adaptación amplia a distintos ambientes, o bien otros que presentan un mejor comportamiento en ambientes determinados, lo que se conoce como adaptación específica.

De esto se desprende que el comportamiento diferencial de los distintos genotipos está fuertemente ligado al ambiente particular en el que son evaluados. Los efectos ambientales son en general los de mayor importancia en ensayos multi-ambientales, pudiendo explicar más del 70% de la variabilidad de los rendimientos. Sin embargo, los resultados de la interacción genotipo-ambiente adquieren mayor relevancia al momento de recomendar variedades.

Si se toma como base el análisis de componentes principales (CP) de análisis ambientales, se puede evaluar la interacción GE en ensayos multi-ambientales, y de esta manera es posible determinar el desempeño comparativo de genotipos no solo a nivel de promedio general en los distintos ambientes (adaptación amplia), sino también en ambientes particulares.

Este tipo de análisis es útil si se quiere evaluar variedades disponibles en el mercado, pudiendo predecirse de cierta forma el comportamiento de las mismas a futuro, y pudiendo también utilizarse para identificar mega-ambientes, es decir conjuntos de ambientes donde ciertos genotipos se desempeñan con un comportamiento relativo mejor que otros.

El primer aspecto a considerar para una correcta interpretación de estos gráficos es el porcentaje que acompaña a cada CP, ya que cuanto más cercana al 100% sea la suma de ambos, mayor será la correlación entre el gráfico y lo sucedido en los ensayos. Luego se debe considerar el polígono

que delimita los marcadores de G. Las variedades que componen este polígono son las que mejor interpretan la realidad de los ensayos.

Los marcadores de E (localidades) están conectados por vectores al origen (0:0) del gráfico. Conforman un mega-ambiente aquellos vectores que se posicionen en un mismo sector del gráfico. A su vez, la variedad de mejor comportamiento para este megaambiente es la que se sitúa en el vértice extremo del polígono que se encuentre más cercano a sus respectivos vectores. Las localidades de vectores más largos (con marcadores más alejados del origen) discriminan mejor el comportamiento de los genotipos que aquellas de vectores menos extensos.

Se presentan a continuación los resultados de los análisis GGE

Biplot realizados con los datos de rendimientos de la Red durante la campaña 2017/2018.

El primer gráfico (Figura 8) busca relacionar los cuatro grupos de madurez (GM) participantes (V, VI, VII y VIII) con las localidades evaluadas en la Red de Variedades Comerciales de Soja del NOA en la campaña 2017/2018. Se trabajó solo con aquellas localidades que presentaban un alto número de variedades ensayadas. Lo primero que debe observarse es la suma de ambos componentes principales (CP1 y CP2), los cuales conforman ambos ejes de coordenadas. En este caso alcanza un valor de 88,9%, lo que indica una alta correlatividad entre el gráfico del análisis y lo ocurrido en la campaña. El primer eje sobre el que se debe observar la disposición de los vectores de los ambientes es el eje horizontal, que en este caso explica más

del 70% de lo ocurrido en los ensayos. Tenemos así dos mega-ambientes, el de la izquierda conformado por dos localidades (La Virginia y Metán) con relación positiva con las variedades del GM VIII; mientras que el otro mega-ambiente (hacia la derecha) cuenta con seis localidades en cuyos ensayos se destacó el GM V y en menor medida, el GM VI. Finalmente, el gráfico no destaca una interacción de las localidades de Mosconi y Los Altos, con algún GM en particular.

Similar análisis sobre las macroparcelas del NOA se realizó con todas la variedades participantes en aquellas (Figura 9), sumando sus componentes principales un 58,4% aproximadamente. Este valor indica una representatividad intermedia del gráfico con respecto a lo ocurrido en los ensayos, por lo que solo se puede inferir

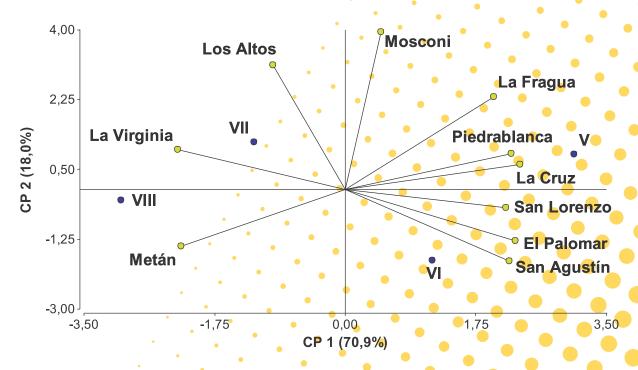


Figura 8. GGE Biplot para el desempeño de grupos de madurez en el noroeste argentino, evaluados durante la campaña 2017/2018.

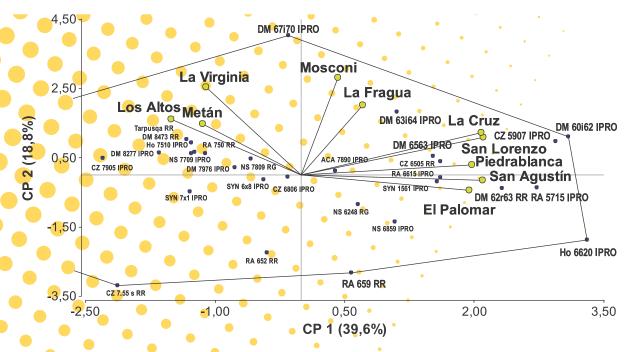
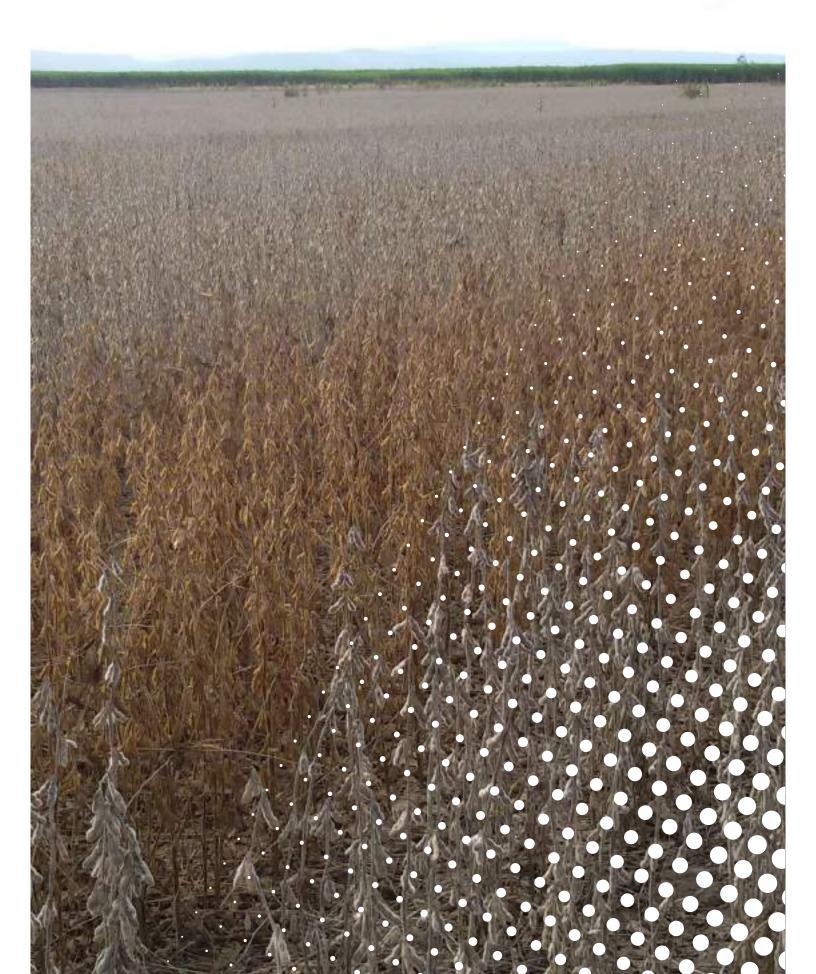


Figura 9. GGE Biplot para el desempeño de variedades en el noroeste argentino, evaluados durante la campaña 2015/2016.

sobre las variedades vértice del polígono. En esta Figura se pueden visualizar dos mega-ambientes, siendo el más importante el conformado por las localidades cuyos vectores se extienden sobre el eje horizontal, hacia la derecha. A este lo forman los ensayos de La Cruz, San Lorenzo, Piedrablanca, San Agustín y El Palomar, todos situados dentro de lo que denominamos Tucumán y Zonas de Influencia, y relacionados positivamente con las variedades vértices DM 60i62 IPRO, principalmente, y HO 6620 IPRO, en segundo lugar. Además encontramos otros cultivares no vértices pero que tuvieron una buen performance con este mega-ambiente, como ser RA 5715 IPRO, CZ 5907 IPRO y DM 62r63 RR. El otro megaambiente presenta los vectores de los ensayos en forma de abanico hacia arriba, pero dirigidos

particularmente hacia la variedades vértice de DM 67i70 IPRO, lo que indica un destacado rendimiento de la misma en estos ambientes.


Consideraciones finales

isponer de esta información local vinculada al comportamiento de las variedades comerciales presentes en el mercado resulta muy importante para el productor, ya que sienta las bases para la elección del cultivar que utilizará en la próxima campaña agrícola, teniendo siempre presente que la variable rendimiento está condicionada por diferentes factores (potencial genético del material, manejo agronómico, escenario climático, etc.).

En resumen, podría decirse que para la presente campaña, localidades evaluadas en TucZl presentaron rendimientos promedio mayores con respecto a los obtenidos en localidades del NOA y superando a la media de los últimos 10 años.

Entre los materiales de GM cortos se destacaron CZ 5907 IPRO, DM 63i64 IPRO y DM 60i62 IPRO, mientras que para los GM largos lo hicieron DM 67i70 IPRO, DM 8473 RR, ACA 7890 IPRO, RA 750 RR, CZ 6806 IPRO y NS 8288 RG.

Además, se observó una marcada tendencia de mejores rendimientos para los GM V y VI, destacándose las variedades DM 60i62 IPRO y DM 67i70 IPRO en la mayoría de los ambientes evaluados. Sin embargo es importante recordar que los materiales de GM VIII, a lo largo del tiempo, siguen comportándose como los más estables para nuestra región.

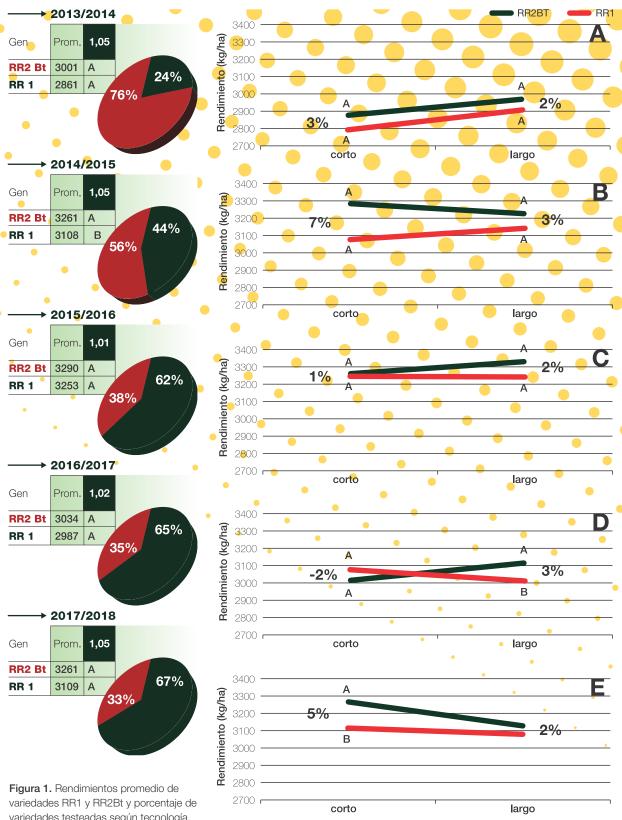
Comparación de rendimiento entre variedades RR1 y RR2Bt de la Red de macroparcelas de soja en el noroeste argentino durante cinco campañas (2013-2018)

Escobar, Marcela*; José R. Sánchez*; Fernando Ledesma*; César H. Gómez*; Juan P. Nemec*; Roberto Gómez* y Mario R. Devani*

*Sección Granos, EEAOC. E-mail: granos@eeaoc.org.ar

Introducción

ntre los factores que juegan roles fundamentales al momento de determinar el rendimiento del cultivo de granos se puede citar el daño generado por insectos, especialmente por orugas defoliadoras, las cuales acompañan al cultivo en todo su ciclo si las condiciones así lo permiten. Por ello, la búsqueda de características de tolerancia o control de las mismas se hace imperiosa y constantemente. En 1994 en la Universidad de Georgia, EE.UU., a través de herramientas biotecnológicas se produce la primera inserción exitosa en el genoma de la soja de un gen que codifica la producción de cristales de proteínas con propiedades tóxicas para larvas de lepidópteros (Monsanto, 2013). El gen fue aislado de la bacteria Bacillus thuringiensis (de allí la denominación de tecnología Bt). En el año 2012 se autorizó en nuestro país la comercialización de semillas, productos y subproductos de soja con eventos acumulados de resistencia a lepidópteros y tolerancia a herbicidas.


La presencia de orugas durante las etapas de desarrollo del cultivo de la soja en la región del noroeste argentino (NOA) es frecuente y elevada. Por este motivo la tecnología Bt es de gran utilidad, no solo para realizar un control más eficiente sino además para disminuir la aplicación de agroquímicos. Asimismo, es de interés para el sector productivo continuar evaluando si los nuevos cultivares IPRO presentan rendimientos superiores con respecto a las variedades de tecnología convencional a lo largo de diferentes campañas. El objetivo del presente trabajo fue comparar resultados de rendimientos entre la nueva tecnología resistente a larvas de algunos lepidópteros con respecto a las variedades RR1, tanto de esta campaña (2017/2018) como de las cuatro anteriores, a partir de datos de la Red de Macroparcelas del NOA.

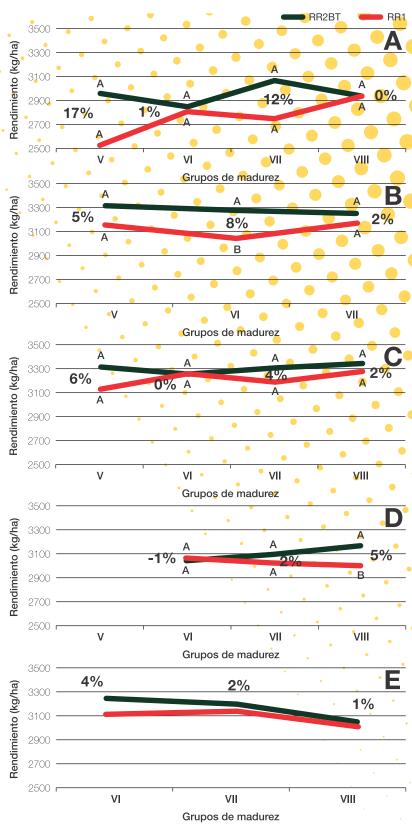
Metodología y Resultados

partir de datos de rendimientos obtenidos de la Red de evaluación de variedades de soja del NOA, en la que se incorporaron materiales con tecnología Bt por quinto año consecutivo, se realizaron comparaciones de rendimientos con variedades RR1 en la campaña actual y entre las cinco últimas campañas (Escobar et al., 2017). En el último año agrícola (2017/2018) se evaluaron 39 variedades de soja en 11 localidades del NOA, de las cuales 24 (68%) contaron con tecnología Bt.

En una primera instancia se realizó un análisis de la varianza (AnaVa) tomando todos los valores de rendimiento (321 parcelas) de la Red, para comparar las medias (LSD 5%) de las variedades RR1 versus las medias de los cultivares RR2Bt, contando con 117 y 204 parcelas respectivamente.

En la Figura 1 se puede observar que para las cinco campañas analizadas, variedades Bt tuvieron rendimientos superiores en todos los casos. Las diferencias se presentaron en el orden del 1% al 5%, siendo significativa estadísticamente solo en la campaña 2014/2015. En lo que respecta a la última campaña, la diferencia fue del 5%.

variedades RR1 y RR2Bt y porcentaje de variedades testeadas según tecnología, en la Red de macroparcelas del NOA en las últimas cinco campañas agrícolas (2013-2018). Letras distintas indican diferencias significativas (test LSD, p>0,05). Prom.: promedio.


Figura 2. Rendimientos promedios de variedades RR1 y RR2Bt discriminadas por ciclo corto y largo de la Red de macroparcelas del NOA, diferencias porcentuales de rendimientos y significancia estadística. a) campaña 2013/2014, b) campaña 2014/2015, c) campaña 2015/2016, d) campaña 2016/2017 y e) campaña 2017/2018. Letras distintas indican diferencias significativas (test LSD, *p*>0,05).

Luego se separaron las variedades, según su ciclo de madurez (GM), en cortas (GM V y VI) y largas (GM VII y VIII), y se realizó un análisis de la varianza en cada ciclo, diferenciando entre aquellas con presencia del gen RR1 o RR2Bt. De esta manera se observa que los cultivares Bt obtuvieron mayores promedios de rendimiento en todos los casos, salvo uno (Figura 2). Sin embargo, el análisis solo arroja diferencias significativas en 3 de los 10 casos: en las campañas 2014/2015, 2017/2018 (ambas en ciclos cortos) y 2016/2017 (en ciclos largos). Siendo esta última campaña, además, la única en la que cultivares RR1 superaron en promedio a los RR2Bt (en el caso de ciclo corto), aunque sin presentar significancia estadística.

Analizando los datos en más detalle, discriminando los materiales en los cuatro grupos de madurez (V, VI, VII y VIII) (Figura 3), se puede apreciar que la tendencia a favor de las Bt se mantiene, observándose en algunos casos diferencias estadísticas más amplias. La máxima diferencia porcentual con significancia estadística a lo largo de las cinco campañas fue de 17% (en el GM V de la campaña 2013/2014), encontrándose también valores del 8%, 6% (en el GM VI) y 5% (en el GM VIII). En el análisis anterior (discriminado por ciclo) se mencionó que variedades RR1 de GM corto tuvieron rendimientos superiores a las Bt; lo que coincide en este análisis, observándose el caso de GM VI de la campaña 2016/2017, por escaso margen (1%).

Además de la incorporación de la proteína que protege al cultivo del ataque de ciertos lepidópteros, la última tecnología es también

Figura 3. Rendimientos promedios de variedades RR1 y RR2Bt discriminadas por GM de la Red de macroparcelas de soja del NOA, diferencias porcentuales de rendimiento y significancia estadística. Letras distintas indican diferencias significativas (test LSD, p>0,05). a) campaña 2013/2014, b) campaña 2014/2015, c) campaña 2015/2016, d) campaña 2016/2017 y e) campaña 2017/2018.

promocionada por sus obtentores por una mayor productividad por unidad de superficie. Para determinar este incremento, se realizó una comparación en la que se seleccionaron aquellas variedades RR1 y RR2Bt, que alcanzaron los mayores rendimientos para cada GM, considerándose el mismo número de materiales en cada caso (Tabla 1).

GM VI son cinco los materiales participantes, y en la mayoría de los casos los RR2Bt superan en rendimiento a los RR1, destacándose DM 60i62 IPRO con un 8% de diferencia en relación a su par mas rendidora (CZ 6505 RR). Esta última superó a tres variedades Bt del mismo grupo (DM 6563 IPRO, SYN 1561 IPRO y HO 6620 IPRO). Para el GM VII se compara el

Tabla 1. Valores de rendimientos promedios de variedades IPRO y sus valores porcentuales con respecto a la/s variedad/es RR1 de mejor rinde de su grupo de madurez, en la campaña 2017/2018.

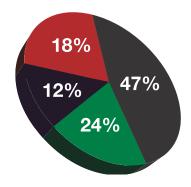
iM	Tecnología	Variedad	Prom. Var.	Prom. Tecn.	Relación Porcentual
•	•	CZ 6505 RR	3284		
	•	DM 62r63 RR STS	3200		
•	RR1	NS 6248 RG	3062	3106	
	•	RA 652 RR	3010		
/1		RA 659 RR	2973		4060/
′' [•	DM 60i62 IPRO	3546	•	106%
•	•	DM 63i64 IPRO	3292	•	
	RR2 Bt	DM 6563 IPRO	3223	3291	
		SYN 1561 IPRO	3 <mark>2</mark> 17	•	
		HO 6620 IPRO	3180	•	
_	•		•	•	
	•	RA 750 RR	3298		•
	RR1	Tarpusqa RR	3 2 63	3148	•
		NS 7809 RG	3063	•	
/II		OZ 7.55 RR	2 967	•	102%
		DM 67i70 IPRO STS	3390	•	•
	RR2 Bt	HO 7510 IPRO	3286	3224	•
	11.12.51	CZ 6806 IPRO	3125	OLLT	•
		NS 7709 IPRO	3095		•
		DM 8473 RR	3137	•	•
	RR1	NS. 8288 RG	2984	3033	
		Biosoja 8.4 RR	2979	•	•
111		ACA 7890 IPRO	3146	•	101%
	RR2 Bt	DM 8277 IPRO STS	3041	3074	•
		CZ 7905 IPRO	3034		•
	_	32,000 11 110			

En los casos (conjunción de Campaña y GM) donde no se presentan datos, fue debido a la falta de materiales con una u otra tecnología. En el caso del

redimiendo de cuatro variedades pertenecientes a cada tecnología, y en este caso DM 67i70 IPRO apenas supera genotipo RR de mayor rendimiento (RA 750 RR). En lo que a RR1 respecta y para este GM, esta última variedad supera en rendimiento a tres materiales Bt (HO 7510 IPRO, CZ 6806 IPRO y NS 7709 IPRO) seguida de Tarpusqa RR, que supera a dos. Por último, en el GM VIII se analizan tres variedades en cada caso, observándose que la de mayor rendimiento es ACA 7890 IPRO. Sin embargo DM 8473 RR (primera en el grupo de las RR1) supera a dos de las tres RR2Bt evaluadas. La diferencia expresada en porcentaje entre las dos variedades de mayores rindes y de ambas tecnologías es ínfima.

Por último, a partir de los resultados obtenidos del análisis anterior, y con los de las últimas cuatro campañas se construye la Tabla 2, en la que se presentan las diferencias porcentuales entre ambas tecnologías para las cinco campañas analizadas. De ello se desprende la Figura 4, en la que se observa en color naranja que en el 18% de los casos, las variedades RR1 superaron o igualaron el rendimiento de las Bt, mientras que estas últimas fueron superiores en el 82% restante. Es importante señalar que si bien este porcentaje es elevado, en el 43% de las veces estas diferencias fueron prácticamente despreciables, adquiriendo valores del 1 al 5%.

Consideraciones finales


ontemplando los resultados obtenidos a lo largo de cinco campañas

- agrícolas se infiere:
- Las variedades comerciales RR2Bt (Intacta-IPRO) logran rendimientos superiores a las variedades RR1 (con diferencias estadísticas significativas en situaciones puntuales) en la

Tabla 2. Valores de rendimientos promedios de variedades IPRO y sus valores porcentuales con respecto a la/s variedad/es RR1 de mejor rinde de su grupo de madurez en las campañas 2013/2014 – 2017/2018.

RR ≥ Bt

■ RR < Bt hasta 5%</p>

RR < Bt de 6 a 10%

RR < Bt mas de 10%

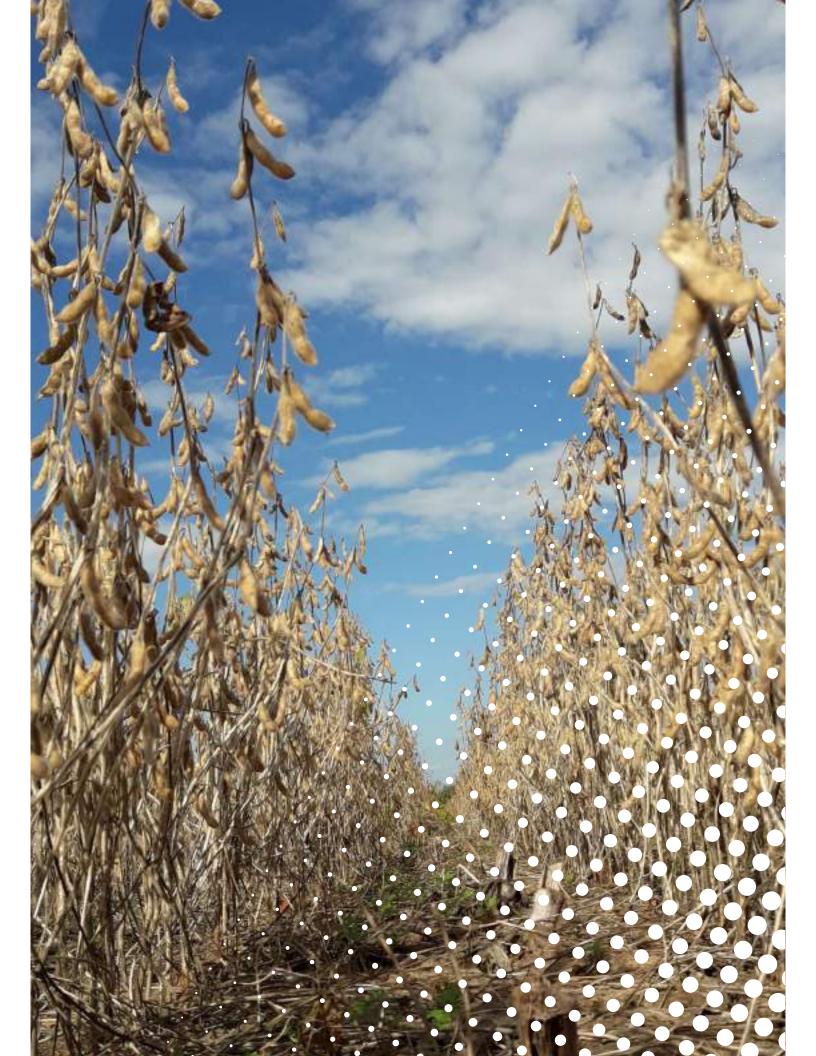
Figura 4. Relación entre diferencias porcentuales de promedios de rendimientos de variedades RR1 y RR2Bt, durante cinco campañas en el noroeste argentino.

mayoría de los análisis.

- Se dispone de variedades RR1 con un alto potencial genético que permiten obtener rendimientos similares e incluso superiores a las Intactas.
- Es de fundamental importancia para el cuidado de la tecnología Bt continuar utilizando un porcentaje del campo con materiales RR1

(principalmente pensando en refugios). Asimismo, que los semilleros sigan ofreciendo al productor la tecnología convencional.

El generalizado uso de variedades IPRO fundamentalmente obedece a una facilidad en el manejo agronómico de lotes comerciales de soja.


Bibliografía citada

Aragón, Jorge. 2003. Avances en el desarrollo de soja con resistencia a insectos. En "Soja: Actualización 2003". Información para extensión nº 81. INTA Marcos Juárez.

Escobar, M.; J. R. Sánchez; F.

Ledesma; H. Gómez; J. P. Nemec; R. C. Gómez y M. R. Devani. 2017. Comparación de rendimiento entre variedades de soja RR1 y RR2Bt, en el noroeste argentino, durante cuatro campañas (2013 -2017). Publicación Especial EEAOC 53, pp.79-83.

Monsanto, 2013. [En línea] Disponible en: http://www.monsanto.com/global/ar/nuestros-compromisos/pages/avances-en-biotecnologia-agricola. aspx.Boletin "Asuntos Científicos de Monsanto Latinoamérica Sur". Marzo de 2013. Consultado: 23 de junio de 2017.

Análisis de rendimientos de la Red de soja, según índice ambiental con ajuste lineal

Escobar, Marcela*; José R. Sánchez*; Fernando Ledesma*, Eduardo Singh*; Juan Páblo Nemec*; Rossana Espejo* y Mario R. Devani*

* Sección Granos, EEAOC; E-mail: granos@eeaoc.org.ar

eleccionar adecuadamente

Introducción

la variedad de soja que se sembrará, es un aspecto fundamental que determina la eficiencia con que se aprovecha la oferta de recursos disponibles (radiación, nutrientes, precipitaciones, etc.). Cada variedad de soja presenta características que le son propias (grupo de maduración, hábito de crecimiento, estructura, aspectos sanitarios, etc.) y determinan su comportamiento, pudiendo ser más o menos aptas para determinados ambientes.

Esta información constituye una herramienta que permite seleccionar el material que mejor se adapte a cada sistema productivo, tomando como rango espacial las diversas condiciones de los ambientes del noroeste argentino (NOA).

Metodología

ara evaluar el comportamiento de las variedades de soja sembradas en la Red

se implementó un análisis, en el que se calcula el índice ambiental considerando el rendimiento logrado por cada cultivar en ambientes diferentes y contrastantes.

De este modo, hay genotipos que incrementan su rendimiento de manera pronunciada a medida que mejora la calidad ambiental, mientras que otros lo hacen de forma más moderada. Mediante los gráficos que acompañan este artículo, es posible observar estos tipos de comportamiento.

Para construir estos gráficos, se ubican en el eje de las abscisas los promedios de los rendimientos de las variedades en cada localidad, constituyendo los índices ambientales. Sobre ellos, en el eje de las ordenadas, se localizan los puntos de los valores de rendimiento logrados por cada variedad en cada ambiente. De esta forma, para cada localidad-ambiente se obtiene una nube de puntos que sirven de base para realizar el ajuste lineal de los materiales. La pendiente de la recta obtenida (b) indica el comportamiento del

genotipo, pudiendo determinarse la "estabilidad" (pendiente similar o menor a la unidad), o la "adaptabilidad" (valor de pendiente superior a uno) de cada material, en función de la caída de rendimiento por cada unidad de merma en el potencial productivo del ambiente (pendiente de la relación lineal entre rendimiento y nivel de producción de cada ambiente probado) (Uhart y Correa, 2001).

Es conveniente, entonces, recordar los conceptos de estabilidad y adaptabilidad: estabilidad es la capacidad de homeostasis de un genotipo (mantener su comportamiento en diferentes condiciones productivas) frente a modificaciones del ambiente; mientras que la adaptabilidad es la capacidad de un genotipo de dar mayores respuestas a condiciones crecientes de calidad ambiental.

A modo de ejemplo, un genotipo con un valor de b=0,8 implica que su rendimiento varía 0,8 kg/ ha cuando el ambiente cambia 1 kg/ha (genotipo A en Figura 1);

en cambio los adaptables serían aquellos materiales donde la pendiente es mayor a 1 (genotipo B en Figura 1). Ejemplo: b=1,2, el genotipo varía su rendimiento en 1,2 kg/ha cuando el ambiente cambia en 1 kg/ha (Ermacora, 2006).

Este análisis corresponde a condiciones ambientales y de manejo particular de la campaña 2017/2018 y debe considerarse como adicional y complementario a los de campañas anteriores.

A continuación se presenta cada grupo de madurez (GM) evaluado, con sus respectivas variedades en cinco gráficos (GM V, GM VI a y b, GM VII y GM VIII), donde se muestran para cada material, la ecuación de la recta de regresión y el coeficiente de determinación (R²) de la misma.

En cada gráfico se puede observar una línea de color rojo, que representa la pendiente=1, sirviendo como referencia para determinar estabilidad/ adaptabilidad y facilitando el reconocimiento de líneas de tendencia de variedades con mejores rendimientos.

Observando los gráficos se pueden obtener las siguientes conclusiones:

GM V: este grupo estuvo conformado por dos materiales: CZ 5907 IPRO y RA 5715 IPRO, ambas de comportamiento adaptable (pendientes con valores de 1,323 y 1,269, respectivamente), observándose que a medida que aumenta la calidad ambiental estas variedades presentan incrementos en sus rendimientos superiores a la oferta. Se puede mencionar que (con pequeñas diferencias de rindes) CZ 5907 IPRO supera a

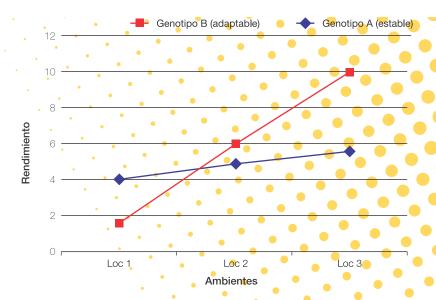
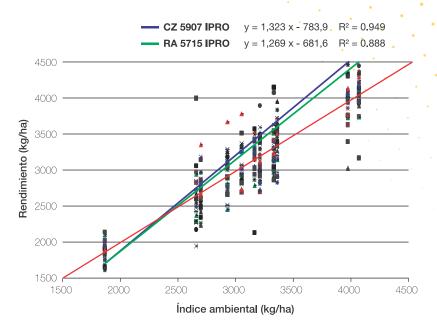
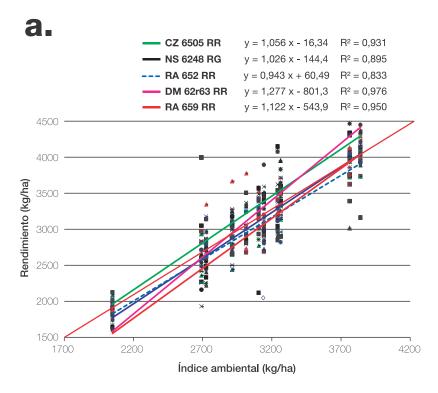



Figura 1. Ejemplo gráfico del ajuste lineal de un genotipo adaptable y de uno estable.

RA 5715 IPRO. Sin embargo, en ambos casos el rendimiento se deprime en ambientes de menor calidad, (Figura 2).


GM VI: en este caso los gráficos se separaron en dos grupos de acuerdo a la tecnología que presenta cada variedad (RR1 y RR2BT). En el primer caso se presentan CZ 6505

RR y DM 62r63 RR, con buena performance en ambientes de alto potencial (Figura 3a). Si bien DM 62r63 RR obtuvo mejores rindes en estos casos, la variedad CZ 6505 RR mantuvo su buen desempeño incluso en ambientes más complejos. Con respecto a variedades con tecnología Bt, DM 60i62 IPRO y Ho 6620 IPRO presentaron rendimientos

Figura 2. Rendimiento (kg/ha) de variedades y ajuste lineal de materiales de GM V según índice ambiental en el noroeste argentino durante la campaña 2017/2018.

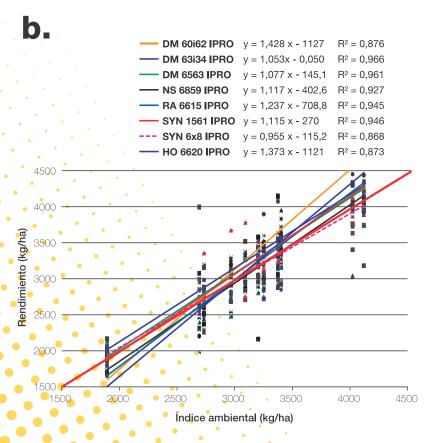


Figura 3. Rendimiento (kg/ha) de variedades y ajuste lineal de materiales de GM VI según índice ambiental en el noroeste argentino durante la campaña 2017/2018. a) variedades RR1, b) variedades RR2Bt.

superiores en ambientes más productivos. Es importante destacar además al material DM 63i64 IPRO, con buenos rindes en situaciones de baja calidad ambiental.

GM VII: la mayoría de los materiales que conforman este grupo tuvieron comportamiento estable esta campaña, sobresaliendo la variedad DM 67i70 IPRO por lograr rendimientos muy superiores en ambientes tanto de alto como de bajo potencial, posicionándose por encima del resto de los materiales que conforman este grupo. Se pueden mencionar también los materiales CZ 6806 IPRO y NS 7809 RG, ambos adaptables de este grupo (pendientes 1,008 y 1,038 respectivamente), con buen desempeño en ambientes de mejor calidad.

GM VIII: en lo que respecta a este GM, en general las variedades tuvieron un comportamiento similar, la mayoría nuevamente estables, destacándose el material ACA 7890 IPRO, el único adaptable de este grupo con rendimientos superiores. Entre los cultivares estables sobresalió Biosoja 8.40 RR, CZ 7905 IPRO y DM 8473 RR en ambientes de baja calidad.

A modo de resumen, en la Figura 6 se presentan 30 variedades analizadas en la campaña 2017/2018 según el rendimiento promedio de las mismas (eje de las X) y los valores de sus respectivas pendientes (eje de las Y). Una línea vertical atraviesa el grafico cortando al eje de las X en el punto 3156 kg/ha, representando el promedio de todas las variedades participantes del análisis. Además, para cada

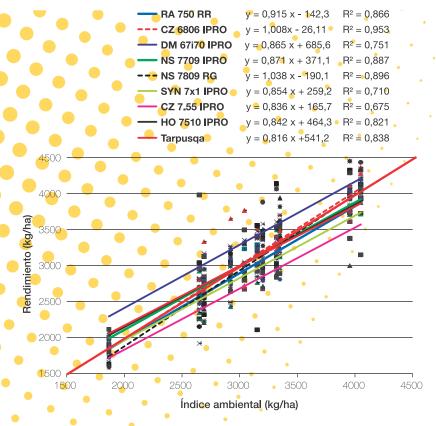
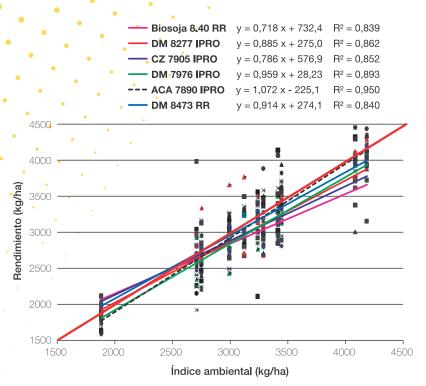



Figura 4. Rendimiento (kg/ha) de variedades y ajuste lineal de materiales de GM VII según indice ambiental en el noroeste argentino durante la campaña 2017/2018.

Figura 5. Rendimiento (kg/ha) de variedades y ajuste lineal de materiales de GM VIII según índice ambiental en el noroeste argentino durante la campaña 2017/2018.

GM corresponde un marcador con forma y color diferentes, mientras que las variedades que se presentan subrayadas corresponden a aquellas con tecnología IPRO (RR2Bt).

De este modo se presentan como variedades adaptables y a su vez de alto potencial de rendimiento (valores por encima del promedio general) los genotipos DM 60i62 IPRO, CZ 5907 IPRO, RA 5715 IPRO, seguidos por CZ 6505 RR y DM 636i64 IPRO. Por último, entre aquellos materiales con valores de pendiente cercanos o menores a la unidad (estables), que a su vez lograron rindes superiores al promedio, se destaca la variedad DM 67i70 IPRO, con un alto potencial de rendimiento.

También se observa del gráfico, que para esta campaña particular, la mayor parte de los cultivares de ciclo corto (V y VI) se comportaron como adaptables, con alto potencial de rendimiento y manteniendo en algunos casos esta característica en ambientes menos productivos; mientras que los de ciclo largo (VII y VIII) se presentaron como estables y con rendimientos algo inferiores a los del primer grupo.

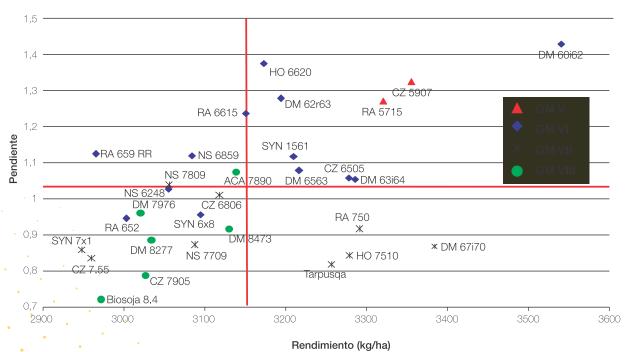


Figura 6. Rendimientos promedio de 30 variedades en 11 localidades de la Red de macroparcelas en el NOA, en la campaña 2017/2018, y pendiente de la recta de regresión obtenida del ajuste lineal de las variedades.

Bibliografía citada

Ermacora, M. 2006. Cómo elegir un híbrido de maíz. Revista CREA 36 (309): 56-64.

Uhart, S. A. y R. O. Correa. 2001. Criterios para la elección del híbrido (primera parte). AgroDecisiones 6 (31): 16-19.

PROAGRO

AGROQUÍMICOS · SEMILLAS · FERTILIZANTES

Parque Industrial Tucumán · +54 (0381) 4530669 info@proagrosrl.com.ar · www.proagrosrl.com.ar