

Biomasa, Bioenergía y Bioderivados M. Regis L. V. Leal Laboratório Nacional de Biorrenováveis Centro Nacional de Pesquisas em Energia e Materiais LNBR/CNPEM

Innovación y Valor Agregado em el Setor Azucarero del MERCOSUR

27 de Maio de 2021

Sumário

- Introdução
- Aspectos energéticos
- Bioderivados da cana-de-açúcar
- Estudos relevantes
- LNBR
- Escolha de bioprodutos
- Comentários finais

Introdução

- A cana-de-açúcar é uma cultura secular e disseminada em cerca de 100 países no mundo
- 81% da cana é direcionada para açúcar e os 19% restantes são utilizados principalmente para etanol
- A grande volatilidade dos preços do açúcar no mercado internacional tem estimulado a busca por diversificação da produção e agregar mais valor a ela
- Vários países produtores de cana já estão diversificados com etanol e eletricidade

Tecnologias

 As tecnologias de produção de açúcar, etanol e eletricidade já estão plenamente maduras e eficientes

 As eficiências no aproveitamento dos açúcares são elevadas (>85%), mas o aproveitamento da energia primária da cana ainda é muito baixo (~30%)

Aspectos energéticos (1)

Energia Primária da Cana

Componentes	Quantidade (kg/tc)	Valor energético (MJ/tc)*		
Açúcares	150	2.500		
Fibras do colmo	135	2.400		
Fibras da palha	140	2.500		
Total		7.400		

^{*}Valores baseados no Poder Calorífico Superior e arredondados

Aspectos energéticos (2)

Energia útil dos produtos e eficiência energética

Produtos	Quantidade	Valor energético (MJ/tc)*
Etanol (I/tc)	80	1.840
Eletricidade excedente (kWh/tc)	40	144
Total (kWh/tc)		1.984

^{*}Valores baseados no Poder Calorífico Superior

Eficiência energética: 1.984/7.400 = 0.268

27%

Por que a baixa eficiência energética?

- Não aproveitamento da palha (RAC) e uso pouco eficiente do bagaço: mau uso das fibras
- Usos não energéticos dos principais resíduos e efluentes (torta de filtro, vinhaça, sobra de bagaço)

É preciso se considerar seriamente o aproveitamento pleno da cana-de-açúcar no processo de agregação de valor à produção Converter a usina em uma eficiente Biorrefinaria e sustentável

Sustentabilidade na produção e processamento da biomassa é vital

Bioenergia da cana no Brasil

 A energia primária da cana representa 18% da Oferta Interna de Energia (OIE)

 Etanol corresponde a 46% dos combustíveis de ciclo Otto (veículos leves)

 Eletricidade gerada representa 16% do consumo residencial e 4% do consumo nacional

Bioderivados da cana

- Esta é uma alternativa ainda muito incipiente e que precisa ser muito bem estudada em cada caso (usina)
- Dificuldades: grande número de alternativas possíveis, o baixo conhecimento das tecnologias existentes e dos mercados (local e global)
- Facilidades:
 - As usinas são facilmente conversíveis em biorrefinarias pois já dispõem de um razoável sistema energético (vapor e eletricidade), escala, pessoal treinado em operação e manutenção
 - As instalações de novos produtos podem ser modulares e de pequena escala e existem várias correntes disponíveis como matéria prima
 - O momento atual é muito adequado para a introdução de produtos renováveis sustentáveis para substituir os fósseis

Por onde começar?

- Quem só faz a açúcar deve pensar inicialmente em etanol e eletricidade excedente
- Em um segundo passo, etanol 2G (E2G) da palha e do bagaço excedente (reduzindo o consumo de vapor de processo e melhorando a eficiência energética com vapor de alta pressão/temperatura)
- Finalmente, considerar alternativas de bioprodutos
- Para os bioprodutos é importante escolher o tipo de mercado onde se deseja atuar (grandes volumes/baixos preços, pequenos volumes/altos preços ou intermediários; local ou global); existem poucos exemplos de sucesso nas usinas
- Tópicos para ficar no radar: etanol 2G, hidrogênio, CO₂, bioquerosene de aviação

Estudos Relevantes

- O Departamento de Energia dos Estados Unidos (USDOE), a Comissão Europeia (EC) e a Agência Internacional de Energia (IEA Bioenergy) realizaram estudos amplos de alternativas de bioprodutos; O SMRI (África do Sul) está desenvolvendo metodologia para seleção
- Nestes estudos é priorizada a plataforma de açúcares derivados da biomassa e também a lignina; o do SMRI é específico para usinas de açúcar
- No LNBR os estudos do E2G foram ampliados para incluir outros produtos; a sustentabilidade está no foco principal

- O LNBR, quando CTBE, trabalhava no desenvolvimento do etanol 2G, em laboratório e planta piloto
- O LNBR continua a desenvolver enzimas e leveduras para etanol 2G e processos em laboratório e planta piloto
- Recentemente expandiu o P&D para bioprodutos, a partir de enzimas e microrganismos com finalidade mais ampla
- Conta com um excelente conjunto de laboratórios, uma versátil e flexível planta piloto para desenvolvimento de processos e uma equipe de especialistas em vários aspecto das engenharia biológica

Escolha do bioprodutos

- É um processo complicado e que exige conhecimentos de mercados (local e global), das tecnologias disponíveis, das políticas públicas aplicáveis e dos tipos de negócios
- As melhores opções são dependentes das condições locais e da usina, portanto não existe melhor solução global
- Os trabalhos da EC, USDOE, IEA Bioenergy, SMRI e outros devem ser consultados no processo

Alguns exemplos

Produto	TRL	Bioprodutos		Produtos convencionais		Redução GEE
		Preço (\$/t)	Volume (kt/a)	Preço (\$/t)	Volume (kt/a)	(%)
Ácido acrílico	5	2.688	0,3	2.468	5.210	>70
РНА	7	6.500	17	6.500	17	20-80
Ácido succínico	8	2.940	38	2,500	76	75-100
Ácido lático	8-9	1.450	472	1.450	472	30-70
Etileno	8-9	1.300/2.000	200	1.100/1.600	127.000	>50
Etanol 1G	9	815	71.310	823	76.677	20-80

Referência: E4tech, RE-CORD, WUR, 2015

Nota: TRL Technology Readiness Level, indica o nível de maturidade da tecnologia

TRL1 a TRL3: Pesquisa/Laboratório

TRL4 e TRL5: Planta piloto

TRL6 e TRL7: Planta de demonstração

TRL8 e TRL9: Estágio comercial

- Pelos exemplos apresentados (não são sugestões) podemos observar:
 - O mercado global de bioprodutos ainda é muito pequeno e variado, e os preços muito semelhantes aos convencionais
 - O mercado de produtos convencionais tem um porte razoável, compatível com o mercado de açúcar
 - As reduções de emissões são significativas e poderão representar ganhos adicionais nos mercados de carbono
- As políticas públicas são importantíssimas para a valorização de bioprodutos e redução dos riscos do negócio

Comentários Finais

- A cana-de-açúcar é uma importante cultura alimentícia, mas é também uma das melhores culturas energéticas (>600 GJ/ha)
- Todavia, seu aproveitamento energético é muito baixo
- Um caminho bom para diversificação é melhorar essa eficiência energética através do uso pleno da cana e dos resíduos e efluentes (bagaço, palha, torta de filtro, vinhaça); etanol e eletricidade são os bioprodutos mais desenvolvidos
- Numa segunda fase, deve se pensar em bioprodutos para substituir os produtos de origem fóssil, pois a demanda por eles será crescente nesta década

[|] in**br**

Referências

- Boysen KC, Foxon KM and Davis SB. 2019. The Development of a screening tool to identify new products for the South African sugarcane industry, International Sugar Journal, World Sugar Yearbook 2019, 12-28
- E4tech, RE-CORD and WUR, 2015. From the Sugar Platform to biofuels and biochemicals. Final Report for the European Commission, contract No. ENER/C2/423-2012/SI2.673791
- IEA Bioenergy Task 42 Biorefinery. Sem data. Bio-based chemicals: Value Added Products from Biorefineries
- Lane J. 2015. The DOE's 12 top biobased molecules what became of them?. Biofuels Digest, April 30, 2015
- USDOE/OEERE/BETO. 2018. Moving beyond drop-in replacement: Performance advantaged bio-based chemicals, Workshop Summary Report, June 2018
- Wespy T, Petersen G. 2004. Top value-added chemicals from biomass, Volume I Results of screening for potential candidates from sugars and synthesis gas (http://www.osti.gov.bridge)

Muito obrigado pela atenção!

regis.leal@Inbr.cnpem.br +55 19 98322 3431